Forizons

66600
 6666666666000 uh6666

 6666666 gand 66666666
 $660<1$ 566666660 $66666666 t$ 66666666 66666666 666666666

Forizons

Student Worksheet Packet
 Horizons
 Mathematics 6

This packet contains the worksheets necessary for one student in the Horizons Mathematics 6 curriculum. It is made available for anyone not being able to or not wanting to use the reproducible masters provided in the Teacher's Guide. Worksheets used more than once will need to be photocopied for that purpose or you can have the student work the problems and write answers on another sheet of paper.

There is approximately one worksheet every few lessons. Enclosed you will find a list of all worksheets and the lessons with which they are associated.

Worksheets provide additional or remedial work for student(s). Some worksheets become manipulatives for the student(s).

Copyright © MCMXCIX by
Alpha Omega Publications, Inc.
804 N. 2nd Ave. E., Rock Rapids, IA 51246-1759
Printed in the United States of America
ISBN 978-0-7403-0011-0
Item Code: JMW065

Where To Use Mathematics Worksheets

This chart shows where worksheets may be used for Horizons Math 6.

No.

Concept

Numeration to the trillions
Lessons Where Worksheets Are Used

Numeration-decimal side (hundred thousandths) 2
Rounding whole numbers 3
Comparing whole numbers 4
Six-digit addition and subtraction $8 \& 9$
Equations 11
$\begin{array}{ll}\text { Order of Operations } & 12\end{array}$
Multiplication three-digit x three-digit 15
$\begin{array}{ll}\text { Two-digit divisors } & 18\end{array}$
Averaging with remainders 20
Four-digit x four-digit 21
Five-digit x five-digit 22
Divide by a four-digit divisor 25
Angles - classification and measuring 32
$\begin{array}{ll}\text { Polygons - sides, vertices, and diagonals } & 33\end{array}$
Quadrilaterals - identification 34
Congruence and Symmetry 35
Types of triangles 36
Circles 38
Solid Figures - Identification 39
Factor trees 42
Prime and Composite 43
Exponents 44
Square roots 45
Scientific Notation 48
Base $2 \quad 49$
Add and subtract decimals 53
Mean, Mode, Median, Range 57
Add and subtract fractions with common denominators 62
Equivalent fractions 63
Compare fractions 65
Add and subtract fractions with different denominators 66
Improper to mixed fractions - mixed fractions to improper 67
Add mixed numbers with different denominators 68
Subtract mixed numbers and borrow from the whole number 69
Multiply 2 decimals 72
Divide a decimal by a whole number 73
Change fractions to decimals 75
Round the quotient $\quad 76$
Divide by a decimal 77

DEFINITION

Expanded form is writing a number to illustrate each place value. Model: In expanded form, 527 is written: $\quad 500+20+7$

Check the following chart.

TRILLIONS			BILLIONS			MILLIONS			THOUSANDS			UNITS		
	$\xrightarrow{\text { ¢ }}$	$\begin{aligned} & \text { © } \\ & \underset{0}{\perp} \end{aligned}$		$\stackrel{\text { ® }}{\underset{\oplus}{\oplus}}$	$\begin{aligned} & \text { 』 } \\ & \stackrel{1}{0} \end{aligned}$			$\begin{aligned} & \stackrel{\infty}{\underset{\sim}{0}} \end{aligned}$		$\stackrel{\otimes}{\stackrel{\sim}{ \pm}}$	¢ $\stackrel{0}{0}$ 0		$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	$\stackrel{\otimes}{\square}$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(1) Write 726 in expanded form. \qquad
(2) Write the number equal to $20,000+7,000+500+20+9$. \qquad

LARGE NUMBERS

A digit followed by six zeros is a multiple of a million. What about a number with nine zeros or twelve zeros? The numbers are multiples of a billion or trillion respectively.

Model: Write the number that begins with the digit 6 followed by eight zeros, and write its name.
$600,000,000$ is six hundred million.
(3) Write the number that starts with the digit 8 followed by eight zeros, and write its name.
\qquad
a.
b. \qquad
(4) Write the number that starts with the digit 5 followed by nine zeros, and write its name.
a. \qquad b. \qquad
(5) Write six billion in numerals. \qquad
(6) Write four trillion in numerals. \qquad

PLACE VALUE

The location of the decimal point is very important. This place value chart will help you choose the correct placement of the decimal point.

$\begin{aligned} & \text { © } \\ & \text { 을 } \\ & \vdots \\ & \vdots \end{aligned}$					$\underset{\underset{\sim}{\bullet}}{\mathbb{O}}$	$\begin{aligned} & \mathscr{\infty} \\ & \stackrel{\omega}{2} \stackrel{5}{2} \\ & 0 \end{aligned}$						
\bigcirc												

Model: Show the location of the decimal point in the fraction $\frac{213}{1,000}$. On the chart, $\frac{1}{1,000}$ is the third place to the right of the decimal point, so $\frac{213}{1,000}=0.213$.
(1) Show the location of the decimal point in the fraction $\frac{145}{1,000}$.
(2) Show the location of the decimal point in the fraction $\frac{456}{10,000}$.
\qquad
(3) Show the location of the decimal point in the fraction $5 \frac{45}{100}$.
(4) Show the location of the decimal point in the fraction $127 \frac{9}{1,000}$.
(5) State fifty-six and fourteen hundredths in numerals.
(6) Show the location of the decimal point in the fraction $\frac{35}{1,000}$.
(7) The decimal sixty-three and twenty-nine hundredths in numerals is \qquad .
a. 63.029
b. 63.29
c. 6.329
d. 630.29
(8) The correct location of the decimal point in the fraction $\frac{327}{1,000}$ is \qquad .
a. 0.327
b. 3.27
c. 0.0327
d. 32.7
(9) On the number line the starting point is \qquad .
a. zero
b. one
c. any place
d. one hundred
(10) The correct location of the decimal point in the fraction $\frac{3}{10,000}$ is \qquad .
a. 0.3
b. 0.03
c. 0.003
d. 0.0003

Numbers of any value can be rounded to a given place.
Round 27 to tens' place.
Find the digit in tens' place.
27 rounds to 30
Look at the digit to the right of 2. (7)
If the digit is 5 or more, round to the next higher tens' number. (30)
If the digit is less than 5 , round to the lower tens' number.
(1) Round to the nearest tens' place.
37 \qquad 45 \qquad 63 \qquad 98 \qquad 51 \qquad
12 \qquad

Round 395,467 to one thousands' place.
Find the digit in one thousands' place. (5)
395,467 rounds to 395,000
Look at the digit to the right of the 5 . (4)
If the digit is 5 or more, round to the next higher thousands' number. $(6,000)$
If the digit is less than 5 , round to the lower thousands' number. $(5,000)$
(2) Round to the nearest...
a. hundreds' place. 1,574 778,386 \qquad 16,360 \qquad
b. thousands' place.

6,127 \qquad 48,963 \qquad 312,615 \qquad
c. ten thousands' place. 104,262 \qquad 4,851,243 \qquad 56,921 \qquad
We can round a number when 9 is the digit to be rounded.
Round 24,976 to hundreds' place.
24,976 rounds to 25,000
9 is in hundreds' place. The digit to the right is 7.
Round 900 to the next higher hundreds. $(1,000)$
Write a zero in hundreds' place. Change 4,000 to 5,000.
(3) Round to the nearest ...
a. one thousands' place.
\qquad 19,672 \qquad 1,329,032 \qquad
b. one millions' place.

29,730,114 \qquad 9,320,647 \qquad 549,842,149 \qquad
c. ten millions' place.

49,267,849 \qquad 989,360,543 \qquad 29,367,851 \qquad
d. one billions' place

569,876,054,293 \qquad
\qquad

Geometry begins with lines and how lines relate to each other.
(1) Match the name of the line to the definition and to the drawing.
a.
\qquad vertical

1. lines that cross each other
b. \qquad parallel
2. lines straight up and down
3. lines the same distance apart along their entire length
4. lines that form 90° angles where they meet
5. lines parallel to the horizon
6.

7.

8.
9.

10.

c. \qquad horizontal
d. \qquad intersecting
e. \qquad
\qquad perpendicular
(2) Match the name to the definition and to the drawing.
a. \qquad line

1. has one end point
2. \qquad
b. \qquad line segment
3. marks the beginning and ending
4. \qquad
5. distance between two rays with a common end point
6.

d. \qquad ray
4. has no beginning and no end
9.

e. \qquad 5. has a beginning and end
10.

(3) Match the name of the angle to the definition and to the drawing.
a. \qquad right

1. equal to 180°
b. \qquad acute
c. \qquad obtuse
2. greater than 90°, but less than 180°
3. less than 90°
d. \qquad straight
4. equal to 90°
5.
6.

7.

(4) Identify each measurement on the protractor. Describe as right, acute, obtuse, or straight.

A	\square
B	\square
C	\square
D	\square
E	\square
F	\square

