

2017-2018 Curriculum Catalog

Chemistry

Table of Contents

CHEMISTRY COURSE OVERVIEW	1
UNIT 1: MEASUREMENT AND ANALYSIS	1
Unit 2: Starting the Investigation: How to Identify Elements, Compounds, and Mixtures	2
UNIT 3: EXPLORING LAWS FOR GASES AND CONSERVATION OF MASS	2
Unit 4: The Discovery of Atoms: Nature's Building Blocks	2
UNIT 5: MOLECULAR STRUCTURE	3
Unit 6: Semester Review and Test	3
Unit 7: Chemical Reactions, Rates and Equilibrium	3
Unit 8: Equilibrium Systems	3
Unit 9: Carbon Chemistry: Hydrocarbons	4
UNIT 10: CARBON CHEMISTRY: FUNCTIONAL GROUPS	4
UNIT 11: CHEMISTRY REVIEW	4
Unit 12: Semester Review and Test	4
UNIT 13: FINAL EXAM	4

Chemistry Course Overview

Chemistry is intended to expose students to the designs and patterns in the world that God has created. In preceding years, students should have developed an understanding for the macroscopic properties of substances and been introduced to the microstructure of substances. This chemistry course will expand upon that knowledge, further develop the microstructure of substances, and teach the symbolic and mathematical world of formulas, equations, and symbols. The major concepts covered are measurement, atomic structure, chemical formulas and bonding, chemical reactions, stoichiometry, gases, chemical equilibrium, and organic chemistry.

Students at this level should show development in their ability and understanding of scientific inquiry. The units contain experiments and projects that seek to develop a deeper conceptual meaning for the student and actively engage the student. The continued exposure of science concepts and scientific inquiry will serve to improve the student's skill and understanding.

Chemistry should be preceded by an Algebra I course and preceded or accompanied by an Algebra II course

Upon completion of the course, students should be able to do the following:

- Calculate and convert units using scientific notation and significant figures.
- Explain the differences between elements, compounds, and mixtures.
- Use Avogadro's number and the gas laws to calculate different variables in chemistry examples.
- Explain and use the periodic table.
- Recognize symbols for common elements.
- Differentiate between the different types of bonds.
- Predict how different elements will reacts.
- Describe acid-base reactions and redox reactions.
- Demonstrate an understanding of organic chemistry and carbon compounds.

	Unit	: 1: Measurement and Analysis		
	Assi	gnments		
	1.	Course Overview	13.	Experiment: Masses
	2.	An Introduction to Chemistry and Metric	14.	Quiz 3: Measurement and Precision
		Measurement	15.	Observation and Hypothesizing
	3.	Report: Metric System*	16.	Learning to Make Useful and Detailed
>	4.	Quiz 1: Metric Conversions		Observations
Chemistry	5.	Showing Precision in Measurements	17.	Using Graphs to Analyze Data
neu	6.	Using Significant Figures to Show the Reliability of	18.	Project: Tutorial for Making a Scatter Plot Using an
Ò		Data		Electronic Spreadsheet Program*
	7.	Using Scientific Notation with Significant Figures	19.	Quiz 4: Measurement to Graphs
	8.	Quiz 2: Precision, Significant Figures, and Scientific	20.	Doing Chemistry Your Way: Find Your Future
		Notation	21.	Quiz 5: Chapter Review
	9.	Measuring Volume in the Chemistry Laboratory	22.	Special Project*
	10.	Practice in Measuring Metric Volumes	23.	Test
	11.	Measuring Mass in the Chemistry Laboratory	24.	Alternate Test*
	12.	Project: Measuring Length with Precision*	25.	Reference

	Unit	2: Starting the Investigation: How to Identify	Eleme	nts, Compounds, and Mixtures
	Assi	gnments		
	1.	The Basic Ingredient: Chemical Elements	8.	Report: Density*
	2.	Quiz 1: Elements, Chemical and Physical Properties	9.	Identifying Different Types of Mixtures
try	3.	Using Chemical and Physical Properties to Identify	10.	Experiment: Using the Tyndall Effect to Identify
Chemistry		Substances		Colloids
Che	4.	Experiment: Observations of a Phase Change	11.	Quiz 3: Chapter Review
	5.	Experiment: Salt and Sand*	12.	Special Project*
	6.	Creating Compounds: Investigating Chemical	13.	Test
		Changes	14.	Alternate Test*
	7.	Quiz 2: Elements to Compounds and Chemical	15.	Reference
		Changes		

	ss			
	Assi	gnments		
	1.	Nothing Stays Put - The Basis for Diffusion and	12.	Combined Gas Law
		Pressure	13.	Quiz 4: Diffusion to Combined Gas Law
	2.	Gases and Kinetic Molecular Theory	14.	Counting Gas Particles: The Measure of the Mole
	3.	Project: Graphing Kinetic Energy*	15.	How Big is a Mole? Avogadro's Number
try	4.	Quiz 1: Diffusion and Kinetic Molecular Theory	16.	Demonstrating Conservation of Mass with
Chemistry	5.	Pressure-Volume Relationships in Gases (Boyle's		Balanced Equations
Che		Law)	17.	Essay: Biography*
	6.	Quiz 2: Diffusion to P-V Relationships in Gases	18.	Project: Examining the Use of Certain Gases as
	7.	Temperature-Volume Relationships in Gases		Propellants*
		(Charles' Law)	19.	Quiz 5: Chapter Review
	8.	Experiment: Finding Absolute Zero Experimentally	20.	Special Project*
	9.	Experiment: Charle's Law and a Metal Can*	21.	Test
	10.	Project: Absolute Zero: Real or Theoretical?*	22.	Alternate Test*
	11.	Quiz 3: Diffusion to V-T Relationships in Gases	23.	Reference

	Unit	t 4: The Discovery of Atoms: Nature's Building	, Blocks	
	Assi	gnments		
	1.	The Golden Years of Chemistry	10.	Charging Up: Ionization of Atoms
	2.	Experiment: Physical Properties of Elements	11.	Quiz 4: Golden Years to Ionization
try	3.	Experiment: Chemical Properties of Some Metals	12.	A Closer Look Inside: Nuclear Reactions
mis	4.	Masters of Classic Atomic Theory	13.	Report: Fission Reactors
Chemistry	5.	Quiz 1: Golden Years to Masters	14.	Quiz 5: Chapter Review
	6.	Designing an Organizational Map: The Periodic	15.	Special Project
		Table	16.	Test
	7.	Quiz 2: Golden Years to Periodic Table	17.	Alternate Test
	8.	The Bohr Model Revisited	18.	Reference
	9.	Quiz 3: Golden Years to Bohr Model		

	Unit	t 5: Molecular Structure		
	Assi	gnments		
>	1.	Chemical Accounting: Stoichiometry	8.	Charging Up: Ionization of Atoms
Chemistry	2.	Valence Structure	9.	Quiz 4: Golden Years to Ionization
mət	3.	Quiz 1: Stoichiometry to Valence	10.	A Closer Look Inside: Nuclear Reactions
$\frac{1}{2}$	4.	Determining Chemical Formulas	11.	Report: Fission Reactors
	5.	Electron Availability: Prelude to Bonding	12.	Quiz 5: Chapter Review
	6.	Quiz 2: Stoichiometry to Prelude to BondingG	13.	Special Project
	7.	Types of Chemical Bonds	14.	Test

≥	Unit 6: Semester Review and Test					
mistr	Assig	nments				
Chei	1.	Review	3.	Alternate Exam—Form A*		
	2.	Exam	4.	Alternate Exam—Form B*		

	Unit	7: Chemical Reactions, Rates and Equilibrium		
	Assi	gnments		
	1.	Evidence for Chemical Change	10.	Factors that Affect Reaction Rate: Temperature,
	2.	Experiment: Observing Chemical Changes		Catalysts, Concentration of Reactants
	3.	Experiment: Chemical Reactions*	11.	Quiz 2: Chemical Change to Reaction Rate
>	4.	Experiment: Ammonium Nitrate*	12.	Reaction Equilibria and Equilibrium Constants
istr	5.	Enthalpy of Reaction	13.	Activity: Exploring Factors that Affect Equilibrium
Chemistry	6.	Using Gibbs Free Energy to Predict Spontaneous	14.	Conditions Affecting Equilibrium
Ò		Reactions	15.	Quiz 3: Chapter Review
	7.	Quiz 1: Chemical Change to Enotropy and Gibbs	16.	Special Project*
		Free Energy	17.	Test
	8.	Factors that Affect Reaction Rates: Solution	18.	Alternate Test*
		Concentration	19.	Reference
	9.	Experiment: Effect of Solution Concentration on		
		Reaction Rate		

	Unit	8: Equilibrium Systems		
	Assig	gnments		
	1.	Chemist's Toolbox	13.	pH Scale
	2.	Solutions	14.	Titration of Acids and Bases
	3.	Solution Concentration: Molarity	15.	Quiz 3: Toolbox to Titration
try	4.	Electrical Nature of Solutions	16.	Redox Equilibria
Chemistry	5.	Solubility	17.	Redox and Oxidation Potentials
Che	6.	Quiz 1: Toolbox TO Solubility	18.	Activity: Solution Concentration vs. Conductivity
	7.	The Dissolving Process	19.	pH Calculations
	8.	Experiment: Solubility Trends	20.	Quiz 4: Chapter Review
	9.	The Solubility Constant	21.	Special Project*
	10.	Quiz 2: Toolbox to Solubility Constant	22.	Test
	11.	Acid-Base Equilibria	23.	Alternate Test*
	12.	Experiment: Acid Strength*	24.	Reference

	Unit	Unit 9: Carbon Chemistry: Hydrocarbons				
	Assi	gnments				
>	1.	Organic Compounds	8.	Alkanes: Saturated Hydrocarbons		
Chemistry	2.	Sources of Organic Compounds	9.	Unsaturated Hydrocarbons		
nem	3.	Experiment: Volatility*	10.	Quiz 3: Chapter Review		
Ò	4.	Quiz 1: Organic Compounds and Their Sources	11.	Special Project*		
	5.	A Closer Look at the Carbon Atom	12.	Test		
	6.	Bonding in Organic Compounds	13.	Alternate Test*		
	7.	Quiz 2: Organic Compounds to Bonding	14.	Reference		

	Unit	10: Carbon Chemistry: Functional Groups		
	Assi	gnments		
	1.	Common Reactions of Saturated Hydrocarbons	8.	Nitrogen Functional Groups
`_	2.	Reactions of Unsaturated Hydrocarbons	9.	Proteins and Amino Acids
Chemistry	3.	Quiz 1: Reactions of Saturated and Unsaturated	10.	Experiment: Preparation of a Polymer
em		Hydrocarbons	11.	Quiz 3: Chapter Review
Ò	4.	Alcohols	12.	Special Project*
	5.	Aldehydes, Acids, and Ketones	13.	Test
	6.	Esters	14.	Alternate Test*
	7.	Quiz 2: Reactions of Saturated and Unsaturated	15.	Reference
		Hydrocarbons to Esters		

	Unit	11: Chemistry Review		
	Assig	gnments		
	1.	Measurement and Analysis	12.	Solutions
	2.	Scientific Analysis and Significant Figures	13.	Solubility Equilibrium
>	3.	Elements, Compounds, and Mixtures	14.	Neutralization
Chemistry	4.	Gases and Moles	15.	Organic Compounds
mət	5.	Quiz 1: Measurement to Gases and Moles	16.	Hydrocarbon Chemistry
Ö	6.	Atomic Structure and Nuclear Reactions	17.	Quiz 3: Chapter Review
	7.	The Periodic Law	18.	Special Project*
	8.	Molecular Structure	19.	Test
	9.	Chemical Reactions, Rates, and Equilibrium	20.	Alternate Test*
	10.	Reaction Dynamics	21.	Reference
	11.	Quiz 2: Measurement to Reaction Dynamics		

mistry	Unit 12: Semester Review and Test				
	Assi	gnments			
Cher	1.	Review	3.	Alternate Exam—Form A*	
	2.	Exam	4.	Alternate Exam—Form B*	

≥	Unit 13: Final Exam				
mistry	Assi	gnments			
Cher	1.	Exam	3. Alternate Exam—Form B*		
	2.	Alternate Exam—Form A*			

(*) Indicates alternative assignment